
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 329 (2010) 2490–2496
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Adaptive synchronization of hyperchaotic systems via passivity
feedback control with time-varying gains
Teerawat Sangpet, Suwat Kuntanapreeda �

Department of Mechanical and Aerospace Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
a r t i c l e i n f o

Article history:

Received 21 September 2009

Received in revised form

20 November 2009

Accepted 15 January 2010
Handling Editor: J. Lam
guaranteed. The feasibility and effectiveness of the proposed scheme is demonstrated
0X/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jsv.2010.01.019

responding author. Tel.: +662 913 2500; fax:

ail addresses: suwat@kmutnb.ac.th, suwatkd@
a b s t r a c t

A passivity feedback control scheme with time-varying gains is proposed for adaptive

synchronization of hyperchaotic systems. By transforming the synchronization

error dynamics into an equivalent passive system, a synchronization control law with

time-varying gains is achieved and the convergence of the synchronization errors is

through its application to hyperchaotic Lü systems.
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1. Introduction

Chaos synchronization has been studied since the pioneering work of Pecora and Carroll [1] was published. It has
attracted great attention due to its superior potential applications, for examples, in communication, laser physics and
optics, mechanics, and chemistry. Many methods have been developed for synchronizing of chaos such as, for example,
linear control [2,3], LMI-based approach [4,5], backstepping design [6], sliding control [7], adaptive control [8], active
control [9], and passivity-based control [10–15].

In recent years, the study of chaos synchronization has more focused on hyperchaotic systems because of their rich
chaos behaviors. The hyperchaotic systems are characterized by multiple positive Lyapunov exponents. The first example
of the hyperchaotic systems was presented by Rössler in 1979 [16]. Since then, other hyperchaotic systems have been
reported [17–20]. Nowadays, some methods have been proposed for synchronization of the hyperchaotic systems such as,
for examples, backstepping design [21], sliding control [22], Lyapunov-based control [23,24]. When the parameters of the
systems are uncertain or unknown, adaptive control techniques can be utilized to eliminate the influence of the
uncertainty [25–27].

The passivity theory is considered as an alternative tool for analyzing stability of nonlinear systems and designing
controllers for nonlinear systems [28–32]. Recently, the concept of passivity has attracted new interest in chaos control
and synchronization. For example, Chen and Liu [10] developed a passivity-based controller for chaos suppression of a
unified chaotic system. A simple linear state feedback controller was obtained. In Ref. [11], Kemih made used of the
stability properties of passive systems to derive a controller to suppress chaos of a nuclear spin generator system. Wang
and Liu [12] presented a passivity feedback control design to synchronize unified chaotic systems. The knowledge of the
bound of a system state is needed to derive the control law. The effectiveness of the design was illustrated using numerical
simulation results for Lorenz, Lü, and Chen systems. Zhang and Lu [13] proposed a passivity-based control for chaos control
and synchronization of the hyperchaotic Chen system. The approach can be applied to other hyperchaotic systems as well.
However, like the work in Ref. [12], the approach needs to know the bound of a system state. Although the bound usually
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can be easily found from extensive numerical simulations, this might not be applicable for a system with unknown
parameters.

As far as passivity-based adaptive control for chaos suppression and synchronization is concerned, Wei and Luo [14]
presented a passivity-based adaptive control law to suppress chaos of a second order power system. There is only one
parameter that is assumed to have uncertainty. The similar approach was also applied to a space-clamped FitzHugh-
Nagumo neurons problem [15].

This paper proposes an adaptive passivity-based control design for synchronization of hyperchaotic systems with
unknown parameters. The problem is very similar to the problems presented in Refs. [26,27]. However, based on the
passivity concept, there are only two control signals needed, instead of four signals. The proposed design could also be
considered as an extension of the work in Ref. [13]. The extension includes that the control design is adaptive and it does
not require the knowledge of the bound of a system state. Computer simulations are used to illustrate the effectiveness of
the proposed approach. Hyperchaotic Lü systems are taken as illustrative examples.

2. Passivity and passivity feedback control

Consider the nonlinear affine system

_x ¼ f ðxÞþgðxÞu; y¼ hðxÞ (1)

where the state xARn, the input uARm, and output yARm. f and the m columns of g are smooth vector fields and h is a
smooth mapping. It is assumed that the origin x=0 is an equilibrium point of the system. The internal dynamics of system
(1) which are consistent with the constraint y=0 is defined as the zero-dynamics. System (1) is said to be zero-state

detectable if u=0 and y=0 imply lim
t-1

xðtÞ ¼ 0.

System (1) is passive if there exists a positive semidefinite function V(x), called a storage function, such that for 8tZ0
satisfying

VðxÞ�Vðx0Þr
Z t

0
uðtÞT yðtÞdt: (2)

If the storage function V(x) is differentiable, Eq. (2) can be expressed in the derivative form as

uT yZ _V : (3)

Moreover, system (1) is output strictly passive if

uT yZ _V þyTsðyÞ and yTsðyÞ40; 8ya0 (4)

for some function s. It is strictly passive if

uT yZ _V þcðyÞ (5)

for some positive definite function c.
A passive system having a positive definite storage function is Lyapunov stable. If the system is strictly passive or

output strictly passive and zero-state detectable, its origin is asymptotically stable. Furthermore, if the storage function is
radially unbounded, the origin is globally asymptotically stable [28,29].

Passivity feedback control, also known as feedback passivation, is a problem of finding the feedback transformation or
control law

u¼ aðxÞþbðxÞv (6)

such that the equivalent system

_x ¼ f ðxÞþgðxÞaðxÞþgðxÞbðxÞv; y¼ hðxÞ

of system (1) is passive. Here a(x) and b(x) are smooth functions. b(x) is also invertible for all x. v is the transformed input of the
equivalent system. If system (1) has unknown parameters, the control law (6) may be replaced by an adaptive control law [30]

u¼ aðx; kÞþbðx; kÞv; _k ¼ gðx;v; kÞ (7)

where k is the time-varying gain.
When system (1) has relative degree one at the origin and the distribution spanned by the vector fields g1(x), y, gm(x) is

involutive, it can be represented as the normal form [28]

_z ¼ f0ðzÞþpðz; yÞy; _y ¼ bðz; yÞþaðz; yÞu (8)

where (z,y) is a new coordinate of the system, locally defined in the neighborhood of the origin, and zARn–m. a(z,y) is
nonsingular for all (z,y) in the neighborhood of the origin. Setting y=0 in (8) yields the zero dynamic

_z ¼ f0ðzÞ: (9)

The stability of the zero-dynamics is a necessary condition for the passivity feedback control design. Therefore, system
(8) cannot be made passive by the feedback control law if its zero-dynamics is unstable [28].
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By considering (8), the passivity feedback control can also be restated as a problem of finding the feedback control law

u¼ aðz; yÞþbðz; yÞv (10)

u¼ aðz; y; kÞþbðz; y; kÞv or _k ¼ gðz; y;v; kÞ (11)

such that the system

_z ¼ f0ðzÞþpðz; yÞy; _y ¼ bðz; yÞþaðz; yÞað�Þþaðz; yÞbð�Þv

is passive.

3. Systems description

A Hyperchaotic Lü system will be taken as an illustrative example. The hyperchaotic Lü system [18] is described by

_x1 ¼ aðx2�x1Þþx4;

_x2 ¼�x1x3þcx2;
_x3 ¼ x1x2�bx3;
_x4 ¼ x1x3þrx4; (12)

where x¼ ½ x1 x2 x3 x4 �
T is the state variable, a, b, c, d are positive parameters, r is a parameter. When a=36, b=3, c=20,

and �0.35orr1.3, system (12) becomes hyperchaotic.

4. Synchronization of hyperchaotic lü systems

From Eq. (12), the master and the slave hyperchaotic Lü systems are described, respectively, by the following equations:

_xm1 ¼ aðxm2�xm1Þþxm4; _xm2 ¼�xm1xm3þcxm2; _xm3 ¼ xm1xm2�bxm3; _xm4 ¼ xm1xm3þrxm4; (13)

and

_xs1 ¼ aðxs2�xs1Þþxs4; _xs2 ¼�xs1xs3þcxs2þu1; _xs3 ¼ xs1xs2�bxs3; _xs4 ¼ xs1xs3þrxs4þu2; (14)

where the subscripts m and s stand for the master and the slave, respectively, and u1, u2 are the only two control signals
used to drive the slave system to synchronize the master system.

By defining the synchonization errors as e1=xs1�xm1, e2=xs2�xm2, e3=xs3�xm3, e4=xs4�xm4 and using (13) and (14), the
synchronization error system is

_e1 ¼ aðe2�e1Þþe4; _e2 ¼�ðxs1xs3�xm1xm3Þþce2þu1; _e3 ¼ ðxs1xs2�xm1xm2Þ�be3; _e4 ¼ ðxs1xs3�xm1xm3Þþre4þu2:

(15)

Since xs1xs3�xm1xm3=e1e3+e1xm3+e3xm1 and xs1xs2�xm1xm2=e1e2+e1xm2+e3xm2,

_e1 ¼ aðe2�e1Þþe4; _e2 ¼�e1e3�e1xm3�e3xm1þce2þu1; _e3 ¼ e1e2þe2xm1þe1xm2�be3; _e4 ¼ e1e3þe3xm1þe1xm3þre4þu2

(16)

By choosing the system output y=[y1 y2]=[e2 e4]T and defining a new coordinate z=[z1 z2]=[e1 e3]T, system (16)
can be written in the normal form (8) as

_z1 ¼�az1þay1þy2; _z2 ¼ z1xm2�bz2þðz1þxm1Þy1; _y1 ¼�z1z2�z1xm3�z2xm1þcy1þu1; _y2 ¼ z1z2þz1xm3þz2xm1þry2þu

(17a)

or

_z ¼ f0ðzÞþpðz; yÞy; _y ¼ bðz; yÞþaðz; yÞu; (17b)

where

u¼
u1

u2

" #
; f0 ¼

�az1

z1xm2�bz2

" #
; pðz; yÞ ¼

a 1

z1þxm1 0

" #
; bðz; yÞ ¼

�z1z2�z1xm3�z2xm1þcy1

z1z2þz1xm3þz2xm1þry2

" #
; aðz; yÞ ¼

1 0

0 1

� �
:

The stability of the zero-dynamics must be verified prior to performing the passivity feedback control design. By setting
y1�y2=0 in (17), the zero-dynamics is

_z1 ¼�az1; _z2 ¼ z1xm2�bz2: (18)

Note that, for the hyperchaotic Lü systems, a4b and a41. Define

WðzÞ ¼
1

2
z2

1þ
1

2
ðz1xm2þz2Þ

2
þ

1

2
ða�bÞz2

2 (19)
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as a Lyapunov function candidate for the zero-dynamics. Taking its derivative with respect to time yields

_W ¼
@W

@z
f0ðzÞ ¼ �az1ðz1þðz1xm2þz2Þxm2Þþðz1xm2�bz2Þððz1xm2þz2Þþða�bÞz2Þ

¼�az2
1�ðbþab�b2Þz2

2�ða�1Þz2
1x2

m2þð1�2bÞz1z2xm2

¼�az2
1�ðbþab�b2Þz2

2�ða�1Þ z1xm2�
1�2b

2ða�1Þ

� �
z2

� �2

þ
ð1�2bÞ2

4ða�1Þ

" #
z2

2

¼�az2
1�ða�1Þ z1xm2�

1�2b

2ða�1Þ

� �
z2

� �2

�
abða�bÞ

a�1

� �
z2

2o0: (20)

Therefore, the zero-dynamics is asymptotically stable at the origin.
If the system parameters a, b, c, r are known, take

V0 ¼Wþ
1

2
y2

1þ
1

2
y2

2 (21)

as a storage function candidate for system (17). The function V0 is positive definite and radially unbounded. Taking its
derivative with respect to time yields

_V 0 ¼
@W

@z
f0ðzÞþ

@W

@z
pðz; yÞyþy1 _y1þy2 _y2:

Using (20) results

_V 0ry1ðaðz1þðz1xm2þz2Þxm2Þþðz1þxm1Þððz1xm2þz2Þþða�bÞz2ÞÞ

þy1ð�z1z2�z1xm3�z2xm1þcy1þu1Þþy2ðz1þðz1xm2þz2Þxm2Þþy2ðz1z2þz1xm3þz2xm1þry2þu2Þ

¼ y1ðaz1ð1þx2
m2þz2Þþz2

1xm2þz1xm1xm2þaz2xm2�bz1z2þaz2xm1�bz2xm1�z1xm3þcy1þu1Þ

þy2ðz1þz1z2þz1x2
m2þz2xm2þz1xm3þz2xm1þry2þu2Þ:¼ y1ðða�bÞðz1þxm1Þz2þaðz1þz1x2

m2þz2xm2Þ

þz1ðz1xm2þxm1xm2�xm3Þþcy1þu1Þþy2ðry2þz1ð1þz2þx2
m2þxm3Þþz2ðxm1þxm2Þþu2Þ

Choosing

u1 ¼�ða�bÞðz1þxm1Þz2�aðz1þz1x2
m2þz2xm2Þ�ðcþrÞy1�z1ðz1xm2þxm1xm2�xm3Þþn1

u2 ¼�ðrþrÞy2�z1ð1þz2þx2
m2þxm3Þ�z2ðxm1þxm2Þþn2; r40 (22)

yields

_V 0rv1y1þv2y2�ry2
1�ry2

2 ¼ vT y�ryT y (23)

or

vT yZ _V 0þryT y

which satisfies (4). Here, v=[v1 v2]T is the transformed input. Thus, when the parameters a, b, c, r are known, the feedback
control law (22) renders system (17) passive.

However, the parameters a, b, c, r are actually unknown. Modify (22) as

u1 ¼�k1ðtÞðz1þxm1Þz2�k2ðtÞðz1þz1x2
m2þz2xm2Þ�k3ðtÞy1�z1ðz1xm2þxm1xm2�xm3Þþn1

u2 ¼�k4ðtÞy2�z1ð1þz2þx2
m2þxm3Þ�z2ðxm1þxm2Þþn2 (24)

where k1(t), k2(t), k3(t), k4(t) are time varying gains. Define y1(t)=k1(t)�(a�b), y2(t)=k2(t)�a, y3(t)=k3(t)�(c+r), and
y4(t)=k4(t)�(r+r) with the dynamics

_y1ðtÞ ¼ _k1ðtÞ ¼ g1ðz; yÞ;
_y2ðtÞ ¼ _k2ðtÞ ¼ g2ðz; yÞ;

_y3ðtÞ ¼ _k3ðtÞ ¼ g3ðz; yÞ;
_y4ðtÞ ¼ _k4ðtÞ ¼ g4ðz; yÞ (25)

where the functions g1, g2, g3, g4, will be determined later. Take

V ¼Wþ
1

2
y2

1þ
1

2
y2

2þ
1

2
y2

1þ
1

2
y2

2þ
1

2
y2

3þ
1

2
y2

4 (26)

as a storage function candidate. The function V is positive definite and radially unbounded. Taking its derivative with
respect to time yields

_V ¼
@W

@z
f0ðzÞþ

@W

@z
pðz; yÞyþy1 _y1þy2 _y2þy1

_y1þy2
_y2þy3

_y3þy4
_y4:

Using (20) results

_V ry1ðaðz1þðz1xm2þz2Þxm2Þþðz1þxm1Þððz1xm2þz2Þþða�bÞz2ÞÞ

þy1ð�z1z2�z1xm3�z2xm1þcy1þu1Þþy2ðz1þðz1xm2þz2Þxm2Þþy2ðz1z2þz1xm3þz2xm1þry2þu2Þ

þy1g1ðz; yÞþy2g2ðz; yÞþy3g3ðz; yÞþy4g4ðz; yÞ ¼ y1ðða�bÞðz1þxm1Þz2þaðz1þz1x2
m2þz2xm2Þ

þz1ðz1xm2þxm1xm2�xm3Þþcy1þu1Þþy2ðry2þz1ð1þz2þx2
m2þxm3Þþz2ðxm1þxm2Þþu2Þ
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þðk1ðtÞ�ða�bÞÞg1ðz; yÞþðk2ðtÞ�aÞg2ðz; yÞ

þðk3ðtÞ�ðcþrÞÞg3ðz; yÞþðk4ðtÞ�ðrþrÞÞg4ðz; yÞ (27)

Substituting the control law (24) yields

_V ry1ðð�k1ðtÞþða�bÞÞðz1þxm1Þz2þð�k2ðtÞþaÞðz1þz1x2
m2þz2xm2Þ

þð�k3ðtÞþcÞy1þv1Þþy2ðð�k4ðtÞþrÞy2þv2Þþðk1ðtÞ�ða�bÞÞg1ðz; yÞþðk2ðtÞ�aÞg2ðz; yÞ

þðk3ðtÞ�ðcþrÞÞg3ðz; yÞþðk4ðtÞ�ðrþrÞÞg4ðz; yÞ ¼ ðk1ðtÞ�ða�bÞÞðg1ðz; yÞ�ðz1þxm1Þz2y1Þ

þðk2ðtÞ�aÞðg2ðz; yÞ�ðz1þz1x2
m2þz2xm2Þy1Þþðk3ðtÞ�ðcþrÞÞðg3ðz; yÞ�y2

1Þ�ry2
1þv1y1

þðk4ðtÞ�ðrþrÞÞðg4ðz; yÞ�y2
2Þ�ry2

2þv2y2

Choosing

g1ðz; yÞ ¼ ðz1þxm1Þz2y1; g2ðz; yÞ ¼ ðz1þz1x2
m2þz2xm2Þy1; g3ðz; yÞ ¼ y2

1; g4ðz; yÞ ¼ y2
2 (28)

results

_V r�ry2
1þv1y1�ry2

2þv2y2 ¼ vT y�ryT y

or

vT yZ _V þryT y

which satisfies (4). Substituting (28) into (25) yields

_k1ðtÞ ¼ ðz1þxm1Þz2y1;
_k2ðtÞ ¼ ðz1þz1x2

m2þz2xm2Þy1;
_k3ðtÞ ¼ y2

1;
_k4ðtÞ ¼ y2

2 (29)

Therefore, the feedback control law (24) with the time-varying gains (29) adaptively renders system (17) passive.
By replacing z1=e1, z2=e3, y1=e2, y2=e4, and setting v1=v2=0, Eqs. (24) and (29) can be rewritten as

u1 ¼�k1ðtÞðe1þxm1Þe3�k2ðtÞðe1þe1x2
m2þe3xm2Þ�k3ðtÞe2�e1ðe1xm2þxm1xm2�xm3Þ

u2 ¼�k4ðtÞe4�e1ð1þe3þx2
m2þxm3Þ�e3ðxm1þxm2Þ (30)

and

_k1ðtÞ ¼ ðe1þxm1Þe2e3;
_k2ðtÞ ¼ ðe1þe1x2

m2þe3xm2Þe2;
_k3ðtÞ ¼ e2

2;
_k4ðtÞ ¼ e2

4 (31)
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Fig. 1. Synchronous errors of the hyperchaotic Lü systems.
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Fig. 2. Time varying gains for synchronizing the hyperchaotic Lü systems.
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respectively. Thus, the synchronization error (17) with the adaptive control law (30) and the time varying gains (31) is
asymptotically stable at the origin. Therefore, the synchronization errors converge to zero, resulting in two synchronized
hyperchaotic Lü systems as desired.

Note that since the control law (30) is not simple the realization of the controller using hardware circuit may be too
difficult. Thus, other realization technologies may be needed.
5. Simulation study

Numerical simulations are conducted in this section to confirm the effectiveness of the designed passivity-based
adaptive controller. The parameters of the hyperchaotic Lü systems are selected as a=36, b=3, c=20, r=1.3, so the systems
exhibit hyperchaotic behaviors. Fig. 1 shows the convergence of the synchronization errors. The initial conditions of the
master system and the slave system are xm ¼ ½5 10 15 20�T and xs ¼ ½1 2 3 4�T , respectively. The initial values of
the gains k1(t), k2(t), k3(t), k4(t), are set to be one. The controller is activated at t=1 s. As it can be seen in Fig. 1, the adaptive
control law (30) with the time varying gains (31) can effectively synchronize the slave system to the master system as
desired. The convergence of the varying gains is shown in Fig. 2.
6. Conclusions

Adaptive synchronization control for hyperchaotic systems using a passivity feedback control with time-varying gains
approach has been proposed. There are only two control signals needed, instead of four signals as done in Refs. [26,27]. By
choosing a novel Lyapunov function for zero dynamics, the derived adaptive control law does not require the knowledge of
the bound of a system state. This could be considered as an extension of the work in Ref. [13]. Numerical simulations have
illustrated that the proposed adaptive controllers are able to drive the states of the slave hyperchaotic Lü system to
asymptotically synchronize the states of the master hyperchaotic Lü system effectively.
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